楕円曲線暗号解読で 10 時間を 1 秒に短縮する学習λ 法 後 保範 (インダストリスパコン推進センター)

公開鍵暗号は RSA 暗号から楕円曲線暗号(ECC)に移行している。ECC 解読のλ 法(ρ 法の並列版)が学習できることを発見。パソコンで 44 件の 60 ビット ECC (70 ビット相当)の解読実験をした。解読時間はρ 法の 10 時間が、学習λ 法で 1 秒に短縮した。学習は ECC 上の固定点を間に挟むことで可能にした。そのため今後、AI により更に高速化も期待できる。

Learning λ method for reducing elliptic curve cryptanalysis from 10 hours to 1 second.

Yasunori Ushiro (ISCPC)

1. はじめに

暗号の 2010 年問題で、1024 ビット RSA 暗号 (RSA-1024) は RSA-2048 か 256 ビットの 楕円曲線暗号 (ECC-256) に移行した。ECC は高度な解法がなく、 ρ 法 (並列は λ 法) が最速である。ECC-256 は RSA-2048 より数万倍強固な暗号と言われている。しかし、 λ 法 は学習する (学習 λ 法) ことで 4 万倍高速化できた。数十 TB の SSD なら百万倍の高速化も可能である。学習 λ 法は、毎回異なる ECC 上の点を固定点の導入で実現した。固定点なので AI による初期値選択で更に高速化の可能性がある。また、解読は多倍長整数演算で、FPGA (Field Program Gate Array, 最終的には ASIC 化で暗号専用 LSI) でも高速化可能である。AI での高速化 (AI 学習 λ 法) が上手く行けば、合計 1 兆倍の高速化も可能になる。その場合は ECC-256 は暗号としては黄信号 (2010 年問題と同じ状態) である。米国 NSA (国家安全保障局) は研究陣の規模から既に実用化している可能性もある。

2. ECC の ρ 法と λ 法による解読の例

 $y^2=x^3+ax+b \pmod{p}$ なる ECC を解読する、 ρ 法と λ 法の解読の軌跡例を示す。p=10007, r (位数)=10091, a=9773, b=8108 の例で示す。図 1 は ρ 法による解読の例で、図 2 は 8 並列 λ 法の解読の例である。 ρ 法は 1 個の初期値より出発し、 \square の点を円周の方に進みながら、円周を一周して同じ点に戻ると解読できる。この軌跡が ρ の文字に似ているため、 ρ 法と言われている。 ρ 法はシリアルな計算なので並列計算できない。そのため、プロセッサー毎に異なる初期値を使用し、各初期値からの計算は ρ 法と同じ計算を並列にする。これを λ 法と呼ぶ。 λ 法は任意の二つの初期値の軌跡が交わると解読できる。交わる軌跡の形から λ 法と言われる。 ρ 法と λ 法は確率的収束速度は同じである。 λ 法は並列計算用に開発された解法であるが、 λ とでのシリアル計算も可能である。今回の学習 λ 法の解読は λ で行っている。一方学習は λ の可能である。

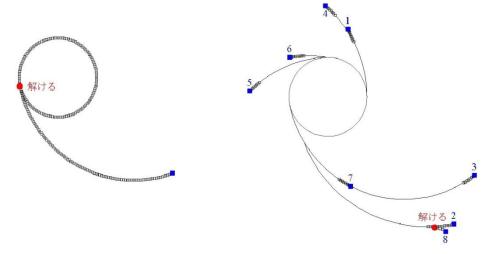
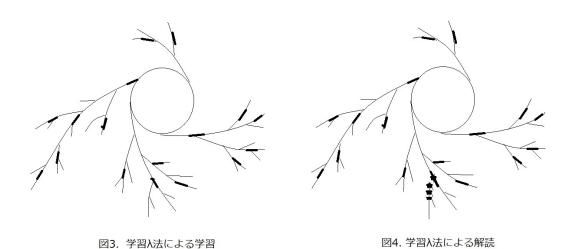


図1. ρ法解読の軌跡

図2. λ法解読の軌跡


3. 学習λ法の発見

ECC 上の 2 点 Q, R を与え、R= $n \times Q$ となる整数 n を ρ 法で求める。点 Q, R は固定し、初期値を色々変更し解読までの軌跡を同じ図の中に記載していた。この軌跡群は全て同じ円周を通り、多数に枝分かれすることが分かった。この図を見て、軌跡群の一部の点を先に計算(学習)しておけば、解読は高速化可能と考えた。しかし、ECC では点 Q と R は固定されていない。そこで、 ρ 法や λ 法の計算ステップを色々検討し、点 Q が固定なら、R は変わっても、軌跡群全体は固定できることが分かった。その方法は計算ステップで「点 T_k から T_{k+1} に移るとき、R に依存させない」と分かった。一方、点 Q は変わるものなのにどのように固定するかの問題が残った。これを解決する方法として、任意の固定点 B を導入する。R= $n \times Q$ から直接整数 n を求めるのではなく、Q= $n_1 \times B$ 及び R= $n_2 \times B$ から整数 n_1 と n_2 を求めればよい。ECC の交換則から $n_1 \times R$ = $n_1 \times n_2 \times B$ = $n_2 \times n_1 \times B$ = $n_2 \times n_2 \times D$ 0 が成立する。これより、R= n_2/n_1 0 (mod n_2/n_2) で求められる。

4. 学習λ法の学習と解読の例

ECC 上の 2 点 Q, R を与え、R= $n \times Q$ となる整数 n を学習 λ 法で学習及び解読する方法を図で示す。学習 λ 法では、R= $n \times Q$ を直接解読することは諦め、任意の固定点 B を導入する。そして、R= $n \times Q$ を解読する代わりに、Q= $n_1 \times B$ と R= $n_2 \times B$ から整数 n_1 と n_2 を求める。Q が同一で R が異なる場合は n_1 は一回だけ求めればよい。更に、学習及び解読の計算ステップで「点 T_k から T_{k+1} に移るとき、Q や R に依存させない」方式を採用させることにより、軌跡は初期値にだけ依存し、点 Q, R に依存しない固定の軌跡群を構成できる。図 3 に学習 λ 法の学習軌跡群を示す。細い線は軌跡群を示し、太い線は学習 λ 法の学習により得られた軌跡である。学習が多くなれば、太い線が多くなる。学習 λ 法の学習は

点 Q と点 R に無関係に事前に計算しておく。図 4 は学習 λ 法により $Q=n_1 \times B$ から学習軌跡群を使用して、整数 n_1 を求めるものである。星印の軌跡をたどり、太字の線 (学習済み) に到達すると整数 n_1 は求められる。次に、同様にして $R=n_2 \times B$ から学習軌跡群を使用して n_2 を求める。 $R=n \times Q$ の関係を満たす整数 n は $n=n_2/n_1$ (mod r) で求められる。予め記憶 (学習) してある学習軌跡群の点の値を使用して解読するため、学習 λ 法の解読は ρ 法や λ 法に比べ、少ない点の計算で済む。これが学習 λ 法にり ECC が高速に解読できる要因である。

5. 数值実験結果

学習 λ 法の効果を調べるため、同じ ECC の問題を ρ 法での解読時間と比較した。比較には 70 ビットの ECC 解読に相当する 44 件の 60 ビット ECC を使用した。解読はランダムに ECC 上の点 Q, R を与え R=n \times Q から n を求める時間を測定した。公平におこなうため、A, B, C, D, E の 5 ケースで各 60 ビット 44 件の解読を行いその平均値で比較した。下記に解読対象とした ECC を示す。数値は 16 進数表示。

ECC-60: $y^2 = x^3 + ax + b \pmod{p}$, rは位数

p = b98cc7dffc8ebbf. r=b98cc7e0020c6af

a = 3dd997f5542f826. b=7bb32feaa873e61

固定の基準点 B は B=(1, 123) を使用した。

 ρ 法と学習 λ 法の解読は 4Ghz の PC の 1 コアで行った。一方、学習 λ 法による学習は GPU (GTX1080) で行った。 ρ 法の多倍長計算は汎用最速ライブラリと言われる gnu の gmp を使用した。一方、学習 λ 法は GPU でも動作させる必要があり、C 及び Cuda で自作した。学習 λ 法は学習結果が 8GB のメモリに入るケースと入らないケースの 2 種類で評価した。メモリ入らないケースは学習データは SSD に記憶した。メモリ内のケースは学習データ取得に GPU で約 1 日を費やし、SSD のケースは約 4 日費やした。それぞれの学習量 (記憶量) は 2GB と 3GGB である。表 1 に ρ 法と学習 λ 法による ECC の解読実験結果を

示す。60 ビットの ECC を 44 件 (70 ビット相当)解読する時間は ρ 法だと 10 時間を超える、一方、学習 λ 法だと、学習量が 2GB で 3.2 秒を切り、36GB なら 0.9 秒を切り大幅な性能向上になる。表 2. に学習量と高速化の関係を示す。数十 TB の SSD が用意できれば学習 λ 法により 100 万倍の高速化も可能である。

我 1. 万 公 C 子 G 7 A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P 的 n A C S 3 77 P O 00 C 7 P E 00 0 7 P E 0 0 0 C 7 P E 0 0 0 C 7 P E 0 0 0 C 7 P E 0 0 0 C 7 P E 0 0 0 C 7 P E 0 0 0 C 7 P E 0 C 7 P E 0						
	ρ法計算	学習λ法時間(s)		ρ法/学習λ法(倍)		
データ	時間(s)	メモリ内	SSD	メモリ内	SSD	
Α	38295	3. 27	0. 94	11700	40700	
В	35813	3. 27	0. 81	11000	44200	
C	36729	2. 98	0. 92	12300	39900	
D	34661	3. 06	0. 92	11300	37700	
Е	38183	3. 28	0. 86	11600	44400	
平均	36736	3 17	0.89	11600	41400	

表 1. ρ 法と学習 λ 法による 44 件の 60 ビット ECC の解読結果

表 2. 学習 λ 法による学習量と高速化の関係

高速化	ECC のビット数(以下)			
(対ρ法,λ法)	64 ビット	128 ビット	256 ビット	
1 万倍	2. 5 GB	4. 5 GB	8. 5 GB	
4 万倍	36 GB	70 GB	140 GB	
10 万倍	220 GB	430 GB	850 GB	
100 万倍	20 TB	40 TB	80 TB	

6. おわりに

楕円曲線暗号(ECC)は RSA 暗号の様に数学的に高度な解法が見つかっていない。その ため 2048 ビット RSA 暗号より、8 倍も短い 256 ビット ECC の方が強固な暗号と言われ ている。ECC の解読は現在 ρ 法 $(\lambda$ 法)が最速と言われている。これに対し、数学的には ρ法と同じ計算で、学習により高速化する方式を考案した。その方式を学習λ法と名付 けた。学習 λ 法は学習するほど高速化する。学習 λ 法の効果を 44 件の 60 ビット ECC (70 ビット相当) で評価した。その結果、2GB の学習量で ρ 法に比較し 1 万倍高速化した。 36GB の学習量にすると 4 万倍高速化できた。学習量を増やせば、 ho 法の 100 万倍も可 能である。 学習λ法は、任意に選んだ ECC 上の点 B を基点として計算し、 軌跡は初期値 にだけ依存する。そのため、ランダムな ECC 上の点 R, Q に対し R=n×Q となる整数 n を 求めるのに、点 R,Qには依存しない軌跡群となる。軌跡群が固定できたので、学習λ法 に人口知能(AI)機能を付けて、学習と解読で共によく通る軌跡群となる初期値の選定が 可能と思われる。学習λ法にAIを働かせると学習と解読が共に高速する。もしAIで更 に学習λ法と同等の高速化が可能なら、現在の256ビットECCは黄信号である。AI付 き学習 λ 法が完成したら、国の暗号政策の根幹にかかわる。 アメリカの国家安全保障局 (NSA)は研究人員の多さから既に、AI付き学習λ法を発見し、実用研究段階の可能性も 否定できない。日本も AI 付き学習λ法を国主導で研究が必要と考える。