楕円曲線暗号(ECC)の脆弱性攻撃による解読例

2020年3月1日 後 保範 (ISCPC)

- 1. ECC の係数と点
 - (1) ECC の係数例

 $y^2 = x^3 + ax + b \pmod{p}$ p = 19, a = 3, b = 10, 位数 r=17 は 2.で定義。

(2) ECC 上の点の例(Q=[x,y])

Q = [13,2]: $y^2 = 2^2 = 4$, $x^3 + ax + b = 13^3 + 3*13 + 10 = 2246 = 4 \pmod{19}$ $y^2 = x^3 + ax + b \pmod{p}$ が成立するので Q は(1)の ECC 上の点

2. ECC の加算結果と位数(r)

 Q_1 =Q, Q_2 = Q_1 +Q, Q_3 = Q_2 +Q,..., Q_{17} = Q_{16} +Q の結果を示す。+処理は後述。 [0,0]は無限遠点と言われる不動点。正式には $[\infty,\infty]$ だが、[0,0]で表す。位数 \mathbf{r} は $\mathbf{r}^*\mathbf{Q}$ =[0,0]なる整数。 Q_{17} =[0,0]なので \mathbf{r} =17。*処理は後述。 Q_1 =[13,2], Q_2 =[9,14], Q_3 =[6,15], Q_4 =[5,13], Q_5 =[2,9], Q_6 =[11,14], Q_7 =[12,11], Q_8 =[18,5], Q_9 =[18,14], Q_{10} =[12,8], Q_{11} =[11,5], Q_{12} =[2,10], Q_{13} =[5,6], Q_{14} =[6,4], Q_{15} =[9,5], Q_{16} =[13,17], Q_{17} =[0,0]

- (1) 加算(+)公式 (係数 b と位数 r を使用しない) 公式は参考までに記載。(mod p)は p で割った余り。
 - (a) 2 倍算(R= 2*P=P+P)

R=[Rx,Ry], P=[Px,Py]とする。

 $Rx = t^2 - 2Px \pmod{p}$. $Ry = t(Px - Rx) - Py \pmod{p}$ $t = (3Px^2+a)/(2Py) \pmod{p}$ <---係数 a を使う

(b) 加算(R=P+Q), P=Q なら 2 倍算を使用

R=[Rx,Ry], P=[Px,Py], Q=[Qx,Qy]とする。

 $Rx = t^2 - Px - Qx \pmod{p}, \quad Ry = t(Px - Rx) - Py \pmod{p}$ $t = (Qy - Py)/(Qx - Px) \pmod{p}$

(2) 乗算(*)の方法

整数 n と点 P の乗算は 2 倍算と加算の組合せで行う。 例えば、Q=11*P なら

 $11 = 2^3 + 2 + 1$ なので、 $P_1 = 2^* P_1$, $P_2 = 2^* P_1$, $P_3 = 2^* P_2$ を 2 倍算で求め、

 $Q = P_3 + (P_1 + P)$ と加算で計算する。

(3) ECC 上の点の性質

Q + [0,0] = Q: 例で $Q_{18} = Q_{r+1} = Q_1$ となり位数 r(=17) の周期で巡回。任意の ECC 上の点 P に対し r*P = [0,0] となる r を位数と呼ぶ。

3. ECC による鍵交換例

 $A \ B \$ が通信で 1.(1)の ECC を使用して安全に鍵を交換する。 通信は点 P,Q,R だけで、整数 n,m を送信しないのが味噌。

(1) 鍵交換の通信と計算

step1:

A: 点 P=[11,5]を B に送信

step2: 乱数はr未満の整数。

A: 乱数 m=7 選定。点 Q=m*P=[18,14]で、Q を B に送信。

B: 乱数 n=11 選定。点 R=n*P=[9,14]で、R を A に送信。 step3:

A: 受信した R=[9,14]で、S=m*R=7*[9.14]=[6,4]を計算。

B: 受信した Q=[18,14]で、T=n*Q=11*[18,14]=[6.4]を計算。 S=T=[6,4]となり、同じ 6 (x 座標を使用)の共通鍵を得る。

(2) 交換の原理

(a) ECC の鍵交換の目的は安全に同じ共通鍵を相手に渡す。 互いに送信した P,Q,R は盗聴されても良い。 情報自体は共通鍵を使用して共通鍵方式で暗号化して送信。

(b) 交換の考え方

Pを1番として、m*Pをすると m番に進む。次に n*(m*P)すると n*m番に進むが r で巡回する。巡回は剰余(mod)となる。 n*m番の乗算は順序によらず n*m=m*n となり、剰余も同一。 数学では ECC の乗算は交換律が成り立つため。 注)交換律は行列乗算の様に成立しないものもある。

4. 誕生日のパラドックス

ECC を解読する ρ 法(並列は λ 法)は誕生日のパラドックスで、n 個中で衝突(誕生日が一緒と同じ)するものを探す。この方法では n 個から衝突を見つけるのがほぼ sqrt(n)回になる。 23 人なら 50%の確率で同じ誕生日の人がいる。 23 人の根拠は統計理論で $sqrt(\pi/2*365)=23$ です。

誕生日のパラドックスをそのまま ECC の解読に適用しようとすると、衝突まですべて記憶が必要です。

ECC-160 ですと、ほぼ $2^{160/2}=2^{80}=10^{24}=$ 兆の兆倍です。記憶を特徴のある点だけ、例えば \mathbf{x} 座標が $\mathbf{p}/2^{40}$ 以下とすれば、記憶量がほぼ $1/2^{40}$ 減ります。

ρ法やλ法は特徴点を利用可能にして、メモリ使用量を減らす方法です。

 ρ 法の反復回数の平均は $sqrt(\pi r/2)$ です。図 1 に反復回数を $sqrt(\pi r/2)$ で正規化し、10 万回解読した場合の頻度を示します。平均なので、数倍の差は発生します。1 反復の計算量は 1 回の加算(2 倍算か加算)と同等です。

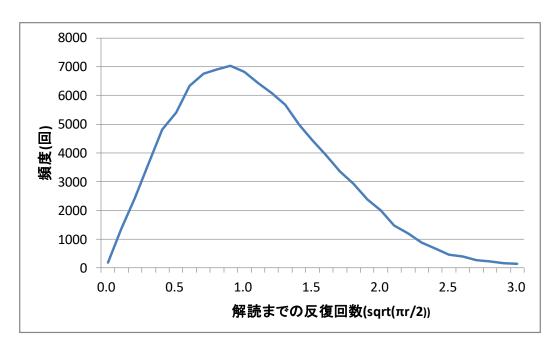


図 1.40 ビット ECC を 10 万回解読した反復回数の分布

5. ECC 攻撃の係数と点

ECC の式: $y^2 = x^3 + ax + b \pmod{p}$

本来の係数: p=19, a=3, b=10, 位数:r=17

暗号化に使用しない b(必然的に r も)を変更できる点 E を算出。

今回の例では E=[9,2]

E=[9,2]で係数 p,a は不変で b が変わり、r も下記に変化する。

b=8, r=15=3*5

 ${f r}$ が小さい素数の積に因数分解されるほど、 ${f ECC}$ の解読は高速化する。 ここでは、 ${f E}$ 及び ${f b}$, ${f r}$ の算出方法 は記載しない。

6. 取得したデータで ECC を解読

(1) 高速解読の概念

上記 E で Q_1 =E, Q_2 = Q_1 +E, Q_3 = Q_2 +E,..., Q_{15} = Q_{14} +E の結果を示す。

 $Q_1 = [9,2], \quad Q_2 = [7,7], \quad Q_3 = [14,1], \quad Q_4 = [12, 10], \quad Q_5 = [3, 14],$

 $Q_6 = [11,2], Q_7 = [18,17], Q_8 = [18,2], Q_9 = [11,17], Q_{10} = [3,5],$

 \mathbf{Q}_{11} = [12,9], \mathbf{Q}_{12} = [14,18], \mathbf{Q}_{13} = [7,12], \mathbf{Q}_{14} = [9, 17], \mathbf{Q}_{15} = [0,0] 今回は \mathbf{Q}_{15} =[0,0]で位数 \mathbf{r} は 15 となる。

ECC の性質 $Q_{k+r}=Q_k$ から上記は 15 で巡回する。

r=15=3*5 なので、どの Q_k からでも、3 飛びなら 5 回で、5 飛びなら 3 回で元の Q_k に戻る。即ち、3 飛びなら要素数 5 の巡回、5 飛びなら要素数 3 の巡回となる。ECC は元の値に戻るか、[0,0]に到達すると解読される。

位数 \mathbf{r} が因数分解されたら、解読対象となる要素数が激減し、 ρ 法では要素数のほぼ平方根で解読できるので、超高速解読となる。

今回の例では、rが小さいので激減しないが ECC-112 の例を示す。

ECC-112: r= 4451685225093714776491891542548933: 素数 E=[3,74162587631443263535948852814234]で、r は下記に変化する。

r= 4451685225093714764417573581309056

=128591*58789*38923*26497*16087*8431*577*19*3*128 ρ 法解読の平均反復数はほぼ $\operatorname{sqrt}(r)$ から $\operatorname{sqrt}(ABD)$ の合計に変化する。 ECC-112 では 2^{56} =数京回から、数千回に激減する。

最大素数がこの程度まで小さくできれば、完全な量子計算機に匹敵する。 完全な量子計算機は $30\sim50$ 年後ごろか? 完全な量子計算機なら \mathbf{r} が素数の ままで解読できる。

4Ghz の PC で 100 万反復は約1秒で計算可能。よって解読は数ミリ秒。 本解読は暗号化処理の数十倍の計算量で可能。暗号の意味が無くなる。

(2) 高速解読方法

r が合成数なのを利用する。今回は r=15=3*5, E=[9,2]を活用する。

本来 R=n*P を B が計算するはずだったのを、トラップし B が R=n*E の計算結果 R=[9,14]を送るのを盗聴して、整数 n を求める。

S=3*E=[14,1]及び T=5*E=[3,14]とすると、S,T の 1,2,3...倍は下記になる。

S: [14,1], [11,2], [11,17], [14,18], [0,0] :5 で巡回

T: [3, 14], [3, 5], [0,0] : 3 で巡回

即ち、S及びTは位数rを5及び3にしたのと同等になる。

位数 r の ECC は ρ 法でほぼ sqrt(r)の反復数で解読できる。

Sの場合は R=n*E の両辺を 3 倍して 3*R=3*(n*E)=n*(3*E)=n*S となり、

H=3*R とすると、H=n*S から n を ρ 法で求める。

 \mathbf{E} を \mathbf{S} , \mathbf{T} に置き換えて \mathbf{H} = \mathbf{n} * \mathbf{S} の方法で \mathbf{n} を求めると下記になる。

 $S \circ f - \lambda : n=1, T \circ f - \lambda : n=2$

これは n (mod5)及び n (mod 3)の結果となっている。

次に、中国剰余定理で各剰余から元のn の値に戻すとn=11 となる。従って、R=n*P の整数n が解読できる。

7. 鍵盗聴の具体例

共通鍵盗聴の前提条件

- (a) 脆弱性を利用しBのECC 処理の妥当性チェックを外す。 妥当性チェックは点P=[x,y]がp,a,bで表されるECC 上の点及び位数rを使用してr*P=[0,0]が成立することで行う。
- (b) A.B の送信は傍受でき、変更して送信可能
- (c) A,B の送信を含め、B と他の送受信も通常通り機能

共通鍵は情報本体の通信の鍵で、通信内容を完全に元に復号できる。

step1:

A が B に送信する点 P=[11,5]を傍受し、E=[9,2]に変更し B に送る。 step2:

AからBに送信のQ=[18,14]を傍受

BからAに送信のR=[12,9]を傍受。6-(2)でn=11と解読。 Rをn*P=11*[11,5]=[9,14] に置き換えAに送信。

step3:

傍受した Q と解読した n を使用して T=n*Q=11*[18,14]=[6.4]を計算 T の x 座標の 6 が共通鍵となり、盗聴完了。

本方式では、A,B 共に共通鍵 6 が交換でき、通常の通信となる。 step2 で R を n と P で計算して、B から受信した R を計算したものに置き換え A に送信するのは A と B の鍵交換を通常通り行わせるため。

- 8. 脆弱性攻撃による ECC 解読の概要(具体例)
- (1) ECC を解読する脆弱性攻撃

ECC の暗号化が係数 b,r を使用しない特性を利用。

送受信する点が正しい ECC 上の点かチェックする機能を攻撃で停止する。

(2) 解読対象の ECC 例

ECC 係数: $y^2 = x^3 + ax + b \pmod{p}$

p= 839269, a= 306829, b= 534648, 位数 r= 839441

解読問題: R=n*P で点 P,R が下記のとき、整数 n を求める。

P=[402527, 332498], R=[277011, 733814]

(3) 解読方針

R=n*P を解読する代わりに P を E に置き換え、Q=n*E の問題に変える。例では、E=[14,5]にする。Q=n*E が計算され、送信される Q を傍受。Q=[723631, 174434]を傍受

これから整数 n を求める。

PをEに変更することで、ECC係数のbとrは下記に変化する。 b=737289、r=840650=43*23*17*25*2

超高速解読には r が小さい素数(ベキ乗を含む)に分解される必要がある。

- (4) Q=n*E から n を解読
 - (a) r の因数 43 を使用しての解読

s=r/43=19550 を求め

Q=n*E の両辺に s を乗算し s*Q=s*(n*E)=n*(s*E)とする。

T=s*Q, R=s*E とすると、Q=n*E の問題は T=n*R に変化する。

本例ではR=[687036, 559703], T=[687036, 559703]である。

この変更により、43*R=43*T=[0,0]になるので位数 \mathbf{r} は 840650 から 43減少する。

T=n*R を ρ 法で解読すると、n=29 が得られる。

 ρ 法での平均反復回数は $sqrt=sqrt(43\pi/2)=8$ となる。

(b) 因数 23.17.25 及び 2 を使用しての解読

(a)の因数 43 と同様にして解読する。それぞれの n は下記が得られる。

因数 23: n=5 因

因数 17: n=11

因数 25: n=18

因数 2: n=1

(c) 元の n へ戻す

r の各因数での n の結果は n (mod 因数)となっている。

即ち、nの43,23,17,25,2の剰余は29,5,11,18,1である。

中国剰余定理で元の n に戻すと n=475093 と解読できる。

中国剰余定理は百五減算とも言われる。それは105=3*5*7で、3,5及び7の剰余から105未満の元の数が容易に計算可能なためである。